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Abstract – Knowledge of the residuals of the error box parameters is essential when the ripple 

method is used for calculating measurement uncertainty. In contrast to residual directivity and 

residual source match, residual reflection tracking is generally not accessible via a ripple 

measurement. It is shown that this parameter can be estimated easily, however, when calibration 

data of the used calibration standards is available. An analysis of existing estimation methods 

for model-based calibration standards is presented, when standard definitions are used. 

Index terms – VNA calibration, ripple method, residual reflection tracking 

 

I. Introduction 

It is one of the weak points of the ripple method that residual reflection tracking cannot be measured in 

an easy and fool-proof way. Although there have been attempts to derive this quantity by experiment, 

the proposed method [1] delivers reliable results only with hermaphroditic connectors, where the same 

calibration standards are used for both ports.  

Therefore, for the vast majority of cases, residual reflection tracking has to be estimated in another 

way. In the past, the influence of residual reflection tracking on the accuracy of reflection parameters 

was judged to be of minor importance, when the magnitude only was of interest. As an example, the 

following statement can be found in in chapter 6.2.4.1 of the previous version of the cg-12 guide [2]: 

“Usually it is satisfactory to use the manufacturer's value for this contribution, e.g. a relative 

uncertainty of 0.001 as half interval of a rectangular distribution.” No information is given to the 

user, whether this also applies to data-based calibration standards. 

When measurements are to be performed, which require phase information, several attempts are in use 

to account for the phase uncertainty of the reflecting standards. To the author’s knowledge, at least one 

accredited laboratory uses the uncertainty determined for residual source match by the ripple method 

as a measure for residual reflection tracking. With another approach, simply the manufacturer 

specifications on phase accuracy of the standards are used.  

 

II. Functional relationships of the residual model 

The outcome of a one-port measurement can be written as a function of the residuals of the test port 

and the true (physical) reflection coefficient of the DUT (see e.g. [3]). For any complex-valued 

reflection coefficient  of the DUT one gets an error-corrected measurement result, which can be 

described by 

 
μΓ

Γ
τδΔΓΓΓ




1
1c , (1) 

when drift and random errors are neglected.   represents the measurement error, and , , stand for 

the complex-valued residuals of directivity, source match and reflection tracking, respectively. This 

same equation holds, of course, also true for the calibration standards that have been used to calibrate 

the VNA. Then   
c
 is the definition of the standard and   can be seen as the definition error. 

When eq. (1) is solved for | | << 1 (i.e. the usual case), one gets the well-known approximation 
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2
μΓτΓδΔΓ  . (2) 

This functional relationship is represented in Fig. 1 for an arbitrary offset short standard and a 

congruent, i.e. phase-matched offset open standard. For such standards, which can be found in regular 

SOLT calibration kits,  phase difference is approximately 180 irrespective of the absolute phase 

angles. Residual directivity  has also been chosen arbitrary in this example.   

 
 

Fig. 1 Definition error o for an offset open standard (a) and s for a phase-matched offset short standard (b)  

As can easily be seen from Fig. 1, both errors share a common component (dotted vector), which is 

composed of residual directivity and a term induced by residual source match. Apparently, these 

portions cancel out when the difference o -s is set up. Thus, a relation between the searched 

quantity ( ) and the definition errors is available, without the need to consider  and  additionally. 

A detailed mathematical derivation is given in the Appendix, leading to a first-order approximation of 
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For residual source match and residual directivity one gets accordingly 
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τΓΔΓδ mm   (6) 

The shaded areas indicate contributions that can be neglected for “typical” calibration devices, i.e. a 

well-matched load and phase-matched high-reflective standards. The latter are most often specified in 

terms of magnitude and phase errors, which, for small values of relative errors | z |, are related to the 

real and the imaginary parts as follows: 
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   zphiIm ΓΔz  , where   








 


z

zz
zphi arg

Γ

ΓΓ
Γ


  indicates the phase error in radians.  (8) 

Phase errors of the high-reflective standards will thus map onto the imaginary part of  , and 

magnitude errors map onto the real part. 
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III. Implications with using generic manufacturer standard definitions 

When calibration standards are used that are characterized by a standardized physical model and 

according manufacturer specifications, the model is regarded as a reference, whereas the calibration 

devices are seen prone to errors. Compared to the definitions made in eq. (1), the errors would appear 

on the right side. The outcome doesn’t change, however, if eq. (1) is used with an inverted sign of the 

device error.  

Typically, the errors of the calibration standards within one specific calibration kit can be regarded 

independent from one another, i.e. the errors being uncorrelated. This stems from the fact that they are 

mainly induced by the dispersion of geometrical dimensions, surface roughness, material properties 

and the thickness of electroplating, which differ between different types of calibration devices. When 

matched sets of calibration standards are assembled, however, e.g. to achieve low residual source 

match, correlation is enforced. 

A standard uncertainty of the imaginary part of  can be obtained by couching eq. (3) in terms of 

uncertainties. When the phase errors of the calibration devices are assumed uncorrelated, and the term 

with  x is neglected, one gets 
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   

4

ˆ

4

ˆ
ˆIm

o
2
phis

2
phi2

ΓΓ
τ

uu
u  , (9) 

where  Γ̂phiu  represents a standard uncertainty of the phase angle of the expectation value of a 

complex-valued quantity , and c
ss

ˆ ΓΓ  , c
oo

ˆ ΓΓ  , 0ˆ τ  are best estimates. 

Example: Phase uncertainties for offset open standards and offset short standards within the Keysight 85054B  

N calibration kit are specified with ±1.5° and ±1°, respectively. Assuming a uniform distribution between 

specification limits results in standard uncertainties of 0.87° and 0.58°, respectively, summing up to a total 

standard uncertainty of 0.005 for the imaginary part of the residual reflection tracking parameter. 

Normally, no tolerance is given by the manufacturers for the reflection magnitude of a high-reflective 

standard. Very probably, this has to do with the fact that the magnitudes of the reflection coefficients 

are assumed to be extremely close to the models. This in turn is a result of the physical law that the 

losses only contribute to a deviation from the ideal value of 1. Investigations on different offset shorts 

that have been carried out at METAS also seem to confirm that the attenuation of the offset line, 

which is a major cause for magnitude errors, is rather robust with respect to manufacturing parameters 

[4]. On the other hand, when considering connector effects and the fact that performance varies 

between manufacturers, there is no basis for a general statement of an uncertainty of only 0.001 for the 

real part of the residual reflection tracking coefficient, irrespective of frequency. Moreover, due to 

random errors, it isn’t possible to verify figures of this order of magnitude. 

Irrespective of an appropriate value, the contribution from the real part of residual reflection tracking 

to total uncertainty of the magnitude will indeed remain marginal, when the variances of the various 

contributions are added. So, a standard uncertainty of 0.0046 will be necessary to change a total 

standard uncertainty from 0.01 to 0.011. 

 

When comparing eqs. (3) and (5), the uncertainty that can be attributed to residual source match will 

exceed that for residual reflection tracking. However this should not detract from the fact that actual 

residual source match () may, by chance, be extremely lower than actual residual reflection tracking 

( ). Therefore, the uncertainty extracted from a ripple measurement of residual source match shall 

not be taken for residual reflection tracking.  
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IV. Implications with using standard definitions from a calibration 

When the (unknown) errors  s and  o are the outcome of a calibration rather than the final result of a 

dispersive manufacturing process, the issue of correlation between these quantities is more difficult to 

analyze. As long as no information is available on the calibration of the VNA that has been used to 

characterize both standards, nothing can be said on this. Thus, when transforming eq. (3) as to read 

uncertainties, the uncertainties associated to  s and  o are to be added linearly. An inequality sign 

has been chosen, however, to indicate that the calculated value will, generally, exceed the actual one: 
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u(Ê) represents a standard uncertainty of the expectation value of complex-valued quantity E, and 
c
ss

ˆ ΓΓ  , c
oo

ˆ ΓΓ  , 0ˆˆˆ  τδμ  represent best estimates. Even with poorly matched devices, e.g. 

for |x | = 0.15, the second term only plays a minor role. When it shall be considered, the standard 

uncertainties of the residuals can be drawn from the ripple measurements, and x is available from the 

calibration reports of the high-reflective standards. 

The uncertainties that are reported for the high-reflective calibration standards, are typically separated 

into phase uncertainties and uncertainties of the magnitude. The relative uncertainty of magnitude will 

mostly be somewhat lower than the quadrature component, i.e. the phase uncertainty in radians, but 

not to the extent as is expected with standard definitions. Therefore it is convenient to agree on only 

one value which can then be used in eq. (10). Considering that this equation regularly over-estimates 

actual uncertainty, one could make use of taking the square root of the mean variance of both 

components, rather than taking their maximum value. 

Example: For a male offset open standard and a male offset short standard of the Keysight 85054B N calibration 

kit, a calibration certificate issued by METAS, makes the following statements for S11 at 18 GHz (in black):  

     Mag  U(Mag) U(Mag) / Mag Phase U(Phase) 

Open 0.9945 0.0045 0.0045 -103.6° 0.33° 0.0057 rad 

Short 0.9939 0.0091 0.0092 82.3° 0.66° 0.0115 rad 

From these values one gets (neglecting the term with x): 
 
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According to the derivation of eq. (10), uncertainties can also be calculated for residual source match 

and residual directivity, when eqs. (5) and (6) are used as a starting point. These values can then be 

compared with the measurement results that have been obtained for the ripple amplitudes, using the 

same standards. In the ideal case of no additional errors, i.e. with an ideal air line, no random errors, 

no drift and negligible connector effects, the ripple magnitude obtained for the measurement of 

residual directivity should be lower than 2.45 times the calibration uncertainty of the match. This is 

based on a coverage probability of 95 % and assumes a bivariate normal distribution of the errors of 

the match. For an (ideal) measurement of the source match ripple, smaller differences should be 

obtained due to the fact that eq. (10) tends to an over-estimation of uncertainty.  

V. Conclusion 

An approach has been presented, which allows to derive the uncertainty of the residual tracking 

parameter from the calibration data of the high-reflective standards within a regular SOLT calibration 

kit. Thus traceability can be established for measurements where the calibrated VNA has been 

characterized in terms of residual directivity and residual source match by the ripple method. In 

addition, it is shown how the residual tracking parameter can be drawn from the specifications of the 

manufacturer when model-based calibration standards are in use. 
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VII. Annex – Derivation of the residuals from the errors of the calibration standards  

Since eq. (1) must be satisfied for all three calibration standards, three equations for the three 

unknowns (, , ) are available. The usual approach of solving them comprises a linearization 

followed by a standardized solution of the linear system. Here, another approach is used, which is an 

extension of the idea behind Fig. 1, but on a more mathematical basis. This way, readers who are not 

so familiar with differentiating and solving linear equation systems are enabled to comprehend the 

computation and to establish a thorough understanding of the underlying principles. 

Residual reflection tracking 

Solving eq. (1) for   results in 
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After introduction of the relative errors  s and  o and the congruence parameter  x from eqs. (4) 

one gets the following equations for open and short: 
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Adding eqs. (A2) and (A3) yields 
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When neglecting second-order terms  o,  s,  and all powers of x, one finally gets  
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Residual directivity 

Solving eq. (1) for  , one gets for the “Match” 
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and after rearranging: 
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With m << 1, terms mμΓ  can be neglected so that one finally gets 

τΓΔΓδ mm   (A8) / (6) 

 

Residual source match 

Dividing eq. (1) by   results in 
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For the short standard and the open standard one gets with the definitions from eqs. (4): 
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Subtracting (A11) from (A10) yields 
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When neglecting second-order terms of the residuals, one gets  
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and after dividing the whole equation by 
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A series expansion of 
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Rearranging of terms leads to 
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Clearly, sμΓ  can roughly be approximated by the first and the second term of eq. (A16), ignoring the 

term with Δx .  Applying this approximation to the contents within the parentheses, and using eq. (A8) 

to substitute the residual directivity term (outside the parentheses), one finally gets 
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